Strategies to establish a continuous cell line in the shark rectal gland of *Squalus acanthias*

Daniel J. Pfau1,2*, Michael Poeschla4, Eric M. Poeschla3,4 and John N. Forrest, Jr2,4

1Fordham University, Bronx, NY 10458
2Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
3Mayo Clinic, Rochester, MN 55905
4Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672

The rectal gland of the dogfish shark, *Squalus acanthias*, is an extra-renal organ whose purpose is to excrete concentrated sodium chloride from the plasma of the blood into the gut. This specialization includes high concentrations of physiologically relevant membrane proteins that make this gland an ideal model for studying transepithelial chloride transport. Our lab continues efforts to establish a continuous cell line that maintains characteristic transport capabilities.

As the dogfish shark swims through its hypertonic marine environment, the rectal gland acts to rid the blood of excess sodium chloride. This specialized organ is ideal for the study of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport across epithelial tissue for several reasons. First, this organ is composed of branched tubules that contain a single cell type specialized for salt transport1. Second, these cells express high levels of the membrane proteins Na/K-ATPase, Na/K/2Cl cotransporter, and CFTR1,4. Third, secretion from the gland is governed by multiple hormonal and regulatory mechanisms capable of eliciting large (up to 50 fold), sudden increases in sodium chloride transport4. Fourth, primary cultures of tubules attain vigorous rates of transport in high resistance monolayers that possess all signal transduction pathways found in the intact gland4,5.

In ongoing attempts to establish a continuous cell line from the gland, primary cultures of tubules were prepared and when confluent, cells were transfected with retroviral vector (pQCXIH) plasmids that encode simian virus 40 large T antigen (SV40T) or human telomerase reverse transcriptase (hTERT). Transfection was accomplished using calcium phosphate co-precipitation or polyethylenimine (PEI), and treatments included SV40T and hTERT separately, or in combination. Additionally, an eGFP-expressing plasmid was added to estimate transfection efficiency and the SV40T and hTERT plasmids contained an encephalomyocarditis virus internal ribosome entry site (IRES)-hygromycin B phosphotransferase (IRES-hygR) cassette located downstream of SV40T or hTERT cDNA to enable selection of cells in hygromycin. To each well of a 24-well plate was added 150-600 ng DNA along with 80-90% of input DNA being transforming plasmid(s), of which 10-20% was eGFP-encoding plasmid. Confocal imaging of transfected cells indicated visible but faint eGFP expression was detectable in rare cells. However, upon transfer of primary cultures, the establishment a continuous cell line was not accomplished.

This work was supported by NIH grants DK 34208, NIEHS 5 P30 ES03828 (Dr. Forrest), and an NSF grant DBI-0453391.